

Surveying Engineering Lecture 5: Traversing-2

Dr. Eng. Hassan Mohamed Hassan <u>Hassan.hussein@feng.bu.edu.eg</u> Geomatics Department

- 1. Traverse Errors
- 2. Angular Closing Error
- 3. Traverse Linear Closing Error
- 4. Closed Traverse
- 5. Connected Traverse

Error exists in surveying observations due to: **Personal errors:** pointing, centering, distances **Instrumental errors:** index error, creep of Hz circle **Natural errors:** Refraction of line of sight, temperature We Should correct <u>angular</u> and <u>linear</u> errors: **Closed Traverse:**

If angles given:

δ (angular closing error)= ∑ measured internal angles - (n-2)*180

= \sum measured external angles - (n+2)*180

 $\delta_{\text{allowable}}$ (allowable angular closing error)= C \sqrt{n}

Angular Closing Error

Where C is a constant depends on the degree of the traverse:

Taken C = 30 (unless stated) IF $\delta > \delta_{\text{allowable}}$ \longrightarrow traverse angles **STOP** rejected repeat $|F \ \delta < \delta_{allowable} \implies observations \ traverse$ distribute angular angles accepted error equally over angles Corrected angle = measured angle $-\frac{\delta}{2}$ Repeat for all angles.... and calculate bearings of all lines ABC = α_{BC} - α_{BA} and so on

Traverse Linear Closing Error Closed Traverse

	Point	Side	Length	Bearing	$\Delta E_{comp.}$	$\Delta N_{comp.}$				
	А	AB	L _{AB}	α_{AB}	$L_{AB}sinlpha_{AB}$	$L_{AB}cos \alpha_{AB}$				
	В	BC	L _{BC}	α_{BC}	L _{BC} sinα _{BC}	L _{BC} cosα _{BC}				
	C	CD	L _{CD}	α _{ср}	$L_{CD}sin\alpha_{CD}$	L _{CD} cosα _{CD}				
	D				Lesinge					
	A			uDA		LDACOSUDA	$A \underbrace{\delta_{\Delta N}}_{\delta_{\Delta E}}$			
Summa traverse lengths	tion of e	<u>←</u>	ΣL							
$=\sqrt{(a)}$	$\delta_{\Delta E}^{2} + (e^{2})$	$\delta_{\Delta \mathrm{N}}^{2})$	or)	RE (Relative Error) = $\frac{\Delta}{\Sigma L}$						

Allowable Relative Error

Where RE_{allowable} depends on the degree of the traverse:

Taken RE allowable = 1:5,000 (unless stated)

Linear Error Correction

Calculation of Coordinates Closed Traverse

Point	Side	Length	Bearing	$\Delta E_{comp.}$	$\Delta N_{comp.}$	$\Delta E_{corr.}$	$\Delta N_{corr.}$	E _{corr.}	N _{corr.}
А	AB	L _{AB}	α_{AB}	$L_{AB}sinlpha_{AB}$	L_{AB} cos α_{AB}	1	1	E _A	NA
В	BC	Lec	Ωrc	$L_{BC}sin\alpha_{BC}$	L _{BC} COSα _{BC}	2	√	1	√
С			BC			V		1	√
D	CD	L_{CD}	α_{CD}	$L_{CD}sin\alpha_{CD}$	L_{CD} cos α_{CD}	1	√	1	√
	D۵		(la)	Lasinga		1	,	•	•
А	UA	►DA	ФDА			N.	7	E _A	N _A
		ΣL		$\delta_{\Delta E}$	$\delta_{\Delta N}$	Σ=Zero	Σ=Zero		

Note: If bearings in closed traverse are given directly, then do not calculate anglesStart directly with calculation of components

Connected Traverse

Note that: If bearings are given then start directly by calculating components, while if angles are given, then calculate bearings using the known equation:

ABC = $\alpha_{BC} - \alpha_{BA}$ and soon

$$N_{B} = N_{A} + \Delta N_{AB}$$
$$E_{B} = E_{A} + \Delta E_{AB}$$

Ε

Point	Side	Length	Bearing	ΔE	AN	Е	Ν	
А	AB	L _{AB}	α_{AB}	$L_{AB}sin \alpha_{AB}$	$L_{AB} cos \alpha_{AB}$	E _A	NA	
В	BC		(Inc.	lecsinger		√	V	
С	DC	-BC	~BC	EBCOLLORBC	-BCCC200BC	1	1	
D	CD	L _{CD}	α_{CD}	$L_{CD}sin\alpha_{CD}$	L _{CD} cosα _{CD}	1	1	
F	DE	L _{DE}	α_{DE}	$L_{DE}sin\alpha_{DE}$	L_{DE} cos α_{DE}	F	N	
L						ĿΕ	INE	

Connected Traverse

Point	Side	Length	Bearing	$\Delta E_{\text{comp.}}$	$\Delta N_{comp.}$	$\Delta E_{corr.}$	$\Delta N_{corr.}$	E _{corr.}	N _{corr.}
Α	AB	L _{AB}	$lpha_{AB}$	$L_{AB}sinlpha_{AB}$	L_{AB} cos α_{AB}	√	1	E _A	N _A
В	BC		(Inc	Lecsinger		<u></u>		-√	√
С	DC	-BC	∽BC			V	۷	1	√
D	CD	L_{CD}	α_{CD}	$L_{CD}sin\alpha_{CD}$	L _{CD} cosα _{CD}	√	1	1	
	DE		0		605 0	1	1		•
Е		L DE	UDE					EE	N _E
$\sum L \qquad \qquad \sum \Delta E_{comp.} \sum \Delta N_{comp.} \sum E_L - E_F \qquad \sum N_L - N_F$									
$\delta_{\Delta E} = \sum \Delta E_{\text{comp.}} - (E_{\text{last}} - E_{\text{first}}) \Delta = \sqrt{(\delta_{\Delta E})^2 + (\delta_{\Delta N})^2} \text{ Coordinates}$									
$\delta_{\Delta N} = \sum \Delta N_{\text{comp.}} - (N_{\text{last}} - N_{\text{first}}) \text{ RE (Relative Error)} = \frac{\Delta}{\Sigma L} \longrightarrow \text{with } \text{RE}_{\text{allow}}$ as in close traverse									

Solved Example

For the following closed traverse, calculate the balanced coordinates of all Points using Bowditch method, given coordinates of A (500m, 700m)

Point	Side	Length	Bearing	$\Delta E_{comp.}$	$\Delta N_{comp.}$	$\Delta E_{corr.}$	$\Delta N_{corr.}$	E _{corr.}	N _{corr.}	
А	AB	150.50	134°52'40"	106.646	-106.192	106.664	-106.199	500	700	
В		425.25	Γ4°21'40"	402.002	72 (0 4	102 019	72 679	606.664	593. <mark>8</mark> 01	
С	BC	125.25	54 31 40	102.003	72.684	102.010	/2.0/0	708.682	666.479	
D	CD	170.00	314°56' 20"	-120.336	120.08	- 120.316	120.072	588.366	786.551	
A	DA	123.70	225°36' 00"	-88.380	-86.548	-88.366	-86.554	500	700	
ΣL=569.45 -0.067 0.026 Σ=Zero Σ=Zero As Given										
$\Delta = \sqrt{(-0.067)^2 + (0.026)^2} = 0.071 \text{m} \text{RE} = \underline{0.071} = \underline{1} < \underline{1} \text{ok}$										
$\Delta E_{ABcorr.} = 106.646 - (-0.067) * \frac{150.50}{569.45} = 106.664m \text{ and so on for } \Delta N_{ABcorr.}$ and all lines										

Solved Example

If component method, then calculate:

 $\sum |\Delta E_{comp.}| = 106.646 + 102.003 + 120.336 + 88.38 = 417.365m$ $\sum |\Delta N_{comp.}| = 106.192 + 72.684 + 120.08 + 86.548 = 385.50m$ and all other lines $\Delta E_{CDcorr.} = -120.336 - (-0.067) + 120.336 = -120.316m$ and so on for $\Delta N_{CDcorr.}$ 417.365 **Note:** If not mentioned which method to use, then: Compass Traverse: Bearings are measured directly by compass or distances measured accurately 🗾 Use Bowditch method Theodolite Traverse: angles are measured directly by theodolite or angles are measured accurately Use Component method

Supplementary files:

- https://www.youtube.com/watch?v=gx9HpICYEhw
- https://www.youtube.com/watch?v=Ww7EcE3w_x4
- https://www.youtube.com/watch?v=Zzps6Rz4Cqw

Please don't use this presentation without getting a permeation from its original owner

Thanks

Dr.Eng. Hassan Mohamed