Surveying Engineering Lecture 5: Traversing-2

Dr. Eng. Hassan Mohamed Hassan Hassan.hussein@feng.bu.edu.eg Geomatics Department

Contents

1. Traverse Errors
2. Angular Closing Error
3. Traverse Linear Closing Error 4. Closed Traverse
4. Connected Traverse

Traverse Errors

Error exists in surveying observations due to:
Personal errors: pointing, centering, distances
Instrumental errors: index error, creep of Hz circle
Natural errors: Refraction of line of sight, temperature We Should correct angular and linear errors: Closed Traverse:
If angles given:
δ (angular closing error) $=\sum$ measured internal angles - (n -
2)*180
$=\sum$ measured external angles $-(\mathrm{n}+2)^{*} 180$
$\delta_{\text {allowable }}$ (allowable angular closing error) $=\mathrm{C} \sqrt{ } \mathrm{n}$

Angular Closing Error

Where C is a constant depends on the degree of the traverse:

$$
\text { Taken C = } 30 \text { (unless stated) }
$$

IF $\delta>\delta_{\text {allowable }}$

STOP
\longrightarrow rejected repeat
IF $\delta<\delta_{\text {allowable }} \longrightarrow$ observations traverse distribute angular \longrightarrow angles acceptederror equally over angles
Corrected angle $=$ measured angle $-\frac{\delta}{n}$
Repeat for all angles..... and calculate bearings of all lines $A B C=\alpha_{B C}-\alpha_{B A} \ldots \ldots .$. and so on

Traverse Linear Closing Error Closed Traverse

RE (Relative Error) $=\Delta$

Allowable Relative Error

Where $\mathrm{RE}_{\text {allowable }}$ depends on the degree of the traverse:
Taken RE allowable $=1: 5,000 \quad$ (unless stated)
$\begin{aligned} & \text { IF RE }>\mathrm{RE}_{\text {allowable }} \longrightarrow \text { traverse rejected } \longrightarrow \text { STO P } \\ & \text { repeat observations } \\ & \text { IF RE }<\mathrm{RE}_{\text {allowable }} \longrightarrow \text { traverse accepted } \\ & \text { distribute error } \\ & \text { using: }\end{aligned}$

Linear Error Correction

BOWDITCH Method

Error distributed according to
$\Delta \mathrm{E}$ corr. $=\Delta \mathrm{E}$ comp. $-\delta \Delta \mathrm{E}{ }^{*} \frac{\mathrm{~L}}{\sum \mathrm{~L}}$ length of each line

For each traverse line
COMPONENT Method ΣL

* $\frac{\mathrm{L}}{\Sigma \mathrm{L}}$

$$
\Delta \mathrm{E}_{\text {corr. }}=\Delta \mathrm{E}_{\text {comp. }}-\delta_{\Delta \mathrm{E}} \frac{\left|\Delta \mathrm{E}_{\text {comp. }}\right|}{\left|\sum \Delta \mathrm{E}_{\text {comp. }}\right|}
$$

Error distributed according to component of each line

For each traverse line
$\Delta \mathrm{N}_{\text {corr. }}=\Delta \mathrm{N}_{\text {comp. }}-\delta_{\Delta \mathrm{N}} * \frac{\left|\Delta \mathrm{~N}_{\text {comp. }}\right|}{}$

$$
\left|\sum \Delta N_{\text {comp. }}\right|
$$

Calculation of Coordinates Closed Traverse

Point	Side	Length	Bearing	$\Delta \mathrm{E}_{\text {comp }}$	$\Delta \mathrm{N}_{\text {comp. }}$	$\Delta \mathrm{E}_{\text {corr }}$	$\Delta \mathrm{N}_{\text {corr }}$	$\mathrm{E}_{\text {corr. }}$	$\mathrm{N}_{\text {corr }}$
A	AB	$L_{A B}$	$\alpha_{\text {AB }}$	$\mathrm{L}_{\text {AB }} \sin \alpha_{\text {AB }}$	$L_{A B} \cos \alpha_{A B}$	$\sqrt{ }$	$\sqrt{ }$	E_{A}	N_{A}
B	BC	$L_{B C}$	$\alpha_{B C}$	$L_{B C} \sin \alpha_{B C}$	$\mathrm{L}_{B C} \cos \alpha_{B C}$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
C	$C D$	$L_{C D}$	$\alpha_{C D}$	$\mathrm{L}_{C D} \sin \alpha_{C D}$	$L_{C D} \operatorname{COS} \alpha_{C D}$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
D								$\sqrt{ }$	$\sqrt{ }$
A	DA	$L_{\text {DA }}$	$\alpha_{\text {DA }}$	$L_{\text {DA }} \sin \alpha_{\text {DA }}$	$L_{D A} \cos \alpha_{D A}$	$\sqrt{ }$	$\sqrt{ }$	E_{A}	N_{A}
		$\sum \mathrm{L}$		$\delta_{\Delta E}$	$\delta_{\Delta N}$	$\Sigma=$ Zero	$\Sigma=$ Zero		

Note: If bearings in closed traverse are given directly, then do not calculate anglesStart directly with calculation of components

Connected Traverse

Note that: If bearings are given then start directly by calculating components, while if angles are given, then calculate bearings using the known equation:
$\mathrm{ABC}=\alpha_{B C}-\alpha_{B A} \ldots \ldots$. and soon

$$
\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{A}}+\Delta \mathrm{N}_{\mathrm{AB}}
$$

Connected Traverse

Point	Side	Length	Bearing	$\Delta \mathrm{E}_{\text {comp }}$	$\Delta N_{\text {comp. }}$	$\Delta \mathrm{E}_{\text {corr }}$	$\Delta N_{\text {corr }}$	$\mathrm{E}_{\text {corr. }}$	$\mathrm{N}_{\text {corr }}$
A	AB	$\mathrm{L}_{\text {AB }}$	$\alpha_{\text {AB }}$	$L_{A B} \sin \alpha_{A B}$	$L_{A B} \operatorname{Cos} \alpha_{A B}$	$\sqrt{ }$	\downarrow	$\mathrm{E}_{\text {A }}$	N_{A}
B								$\sqrt{ }$	$\sqrt{ }$
C	BC	$L_{B C}$	$\alpha_{B C}$	${ }_{B C} \sin \alpha_{B C}$	${ }_{B C} \cos \alpha_{B C}$	V	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
D	CD	$L_{C D}$	$\alpha_{\text {CD }}$	$\mathrm{L}_{\text {CD }} \sin \alpha_{\text {cD }}$	$L_{\text {CD }} \cos \alpha_{C D}$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
E	DE	$L_{\text {DE }}$	$\alpha_{\text {DE }}$	$L_{\text {DE }} \sin \alpha_{\text {DE }}$	$L_{\text {DE }} \operatorname{Cos} \alpha_{\text {DE }}$	$\sqrt{ }$	$\sqrt{ }$	E_{E}	N_{E}

Solved Example

For the following closed traverse, calculate the balanced coordinates of all Points using Bowditch method, given coordinates of A (500m, 700m)

Solved Example

If component method, then calculate:

$$
\begin{aligned}
& \Sigma\left|\Delta \mathrm{E}_{\text {comp. }}\right|=106.646+102.003+120.336+88.38=417.365 \mathrm{~m} \\
& \Sigma\left|\Delta \mathrm{~N}_{\text {comp. }}\right|=106.192+72.684+120.08+86.548=385.50 \mathrm{~m} \\
& \text { and all other lines } \\
& \Delta \mathrm{E} \text { cDcorr. }=-120.336-(-0.067) * \frac{120.336}{417.365}=-120.316 \mathrm{~m} \text { and so on for } \Delta \mathrm{N}_{\text {CDcorr. }}
\end{aligned}
$$

Note: If not mentioned which method to use, then:
Compass Traverse: Bearings are measured directly by compass or distances measured accurately \quad Use Bowditch method Theodolite Traverse: angles are measured directly by theodolite or angles are measured accurately

Supplementary files:

> https://www.youtube.com/watch?v=gx9HplCYEhw
> https://www.youtube.com/watch?v=Ww7EcE3w_x4
$>$ https://www.youtube.com/watch?v=Zzps6Rz4Cqw

Please don't use this presentation without getting a permeation from its original owner
Thanks

Dr.Eng. Hassan Mohamed

